Molecular designer self-assembling peptides.
نویسندگان
چکیده
Chemistry has generally been associated with inorganic and organic syntheses, metal-organic composites, coordinate metal chemistry, catalyses, block copolymer, coating, thin film, industrial surfactants and small-molecule drug development. That is about to change. Chemistry will also expand to the discovery and fabrication of biological and molecular materials with diverse structures, functionalities and utilities. The advent of biotechnology, nanotechnology and nanobiotechnology has accelerated this trend. Nature has selected and evolved numerous molecular architectural motifs at nanometer scale over billions of years for particular functions. These molecular nanomotifs can now be designed for new materials and nanodevices from the bottom up. Chemistry will again harness Nature's enormous power to benefit other disciplines and society. This tutorial review focuses on two self-assembling peptide systems.
منابع مشابه
Dynamic behaviors of lipid-like self-assembling peptide A6D and A6K nanotubes.
Nanoscience and nanotechnology require development of nanomaterials that are amiable for molecular design from bottom up. Molecular designer self-assembling peptides are one of such nanomaterials that will become increasingly important for the endeavor. Peptides have not only been used in all aspects of biomedical and pharmaceutical research and medical products, but also have had enormous impa...
متن کاملBiological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration
A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling pept...
متن کاملSlow and sustained release of active cytokines from self-assembling peptide scaffolds.
Controlling the cellular microenvironment is thought to be critical for the successful application of biomaterials for regenerative medicine strategies. Self-assembling peptides are proving to be a promising platform for a variety of regenerative medicine applications. Specifically, RADA16-I self-assembling peptides have been successfully used for 3D cell culture, accelerated wound healing, and...
متن کاملPeptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity
Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide-membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phosph...
متن کاملControlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold.
The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical Society reviews
دوره 35 11 شماره
صفحات -
تاریخ انتشار 2006